

- requires an initial stock of thermal reactors, $K_{1H,0} = \phi_{HKZ}$
- a constant rate of reinvestment, $k_{1H,t} = \delta_H K_{1H,0} = \delta_H \phi_{HKZ}$
- an initial stock of loaded fuel , $U_{1H,0} = \phi_{HUZ}$,
- a constant rate of purchase of fresh fuel, $u_{1H,T} = b_H U_{1H,0} = b_H \phi_{HUZ}$, and
- > yields a constant stream of waste, $w_{1H,t} = b_H U_{1H,0} = b_H \phi_{HUZ}$.
- A constant rate of investment in reactors, $k_{1H,t}=1...$
 - generates an increasing capital stock of thermal reactors, K_{1H_1} = $(1/\delta_{H})(1-e^{-\delta t})$, that gradually approaches a limiting level of $(1/\delta_{H})$,
 - requires a rate of purchase of fresh fuel, $u_{1H,t} = \phi_{HUK} b_H (1/\delta_H) (1-e^{-\delta t}) + \phi_{HUK} e^{-\delta t}$, which generates a stock of loaded fuel following a path like that of the capital stock, $U_{1H,t} = \phi_{HUK} (1/\delta_H) (1-e^{-\delta t})$ generates a time profile of electricity production like the path of the

7

- thermal reactor capital stock, and
- yields a similar time path of waste production.

CEEPR MIT Contor for Energy and Environmental Policy Research

A constantly growing rate of electricity production, $z_1 = e^{\gamma t}$.

Model Continued

FC#3

- Thermal reactor module operates the same as before, except that the 5 spent fuel is not disposed of in its entirety; spent fuel is reprocessed, spent rule is not disposed of in its entirety; spent rule is reprocessed, separated into a stream of waste, $w_{3H,t} = b_H U_{3H,t}$, that is disposed of at a cost, p_{3HW} , and a stream of materials that are fabricated into fresh fuel for fast reactors, $u_{3HF,t} = \phi_{HFU} b_H U_{3H,t}$, at a cost of p_{3HFU} . Fast reactor capital stock, $K_{3F,t}$ with depreciation at a constant rate, δ_{F} , and investment in new/replacement capital at rate $k_{3F,t}$, so that $dK_{3F,t}/dt$ = $k_{3F,t} - \delta_F K_{3F,t}$. A unit of new capital is purchased at cost p_{3FKC} .
- Stock of loaded fast reactor fuel, $U_{3F,r}$ burned at a constant rate, b_F , and replaced with new fuel fabricated from spent thermal reactor fuel at rate $u_{3HE,t}$, and replaced with new fuel fabricated from spent fast reactor fuel at rate $u_{3FF,t}$, so that $dU_{3F,t'}/dt = u_{3HF,t} + u_{3FF,t} - b_F U_{3F,t'}$ A unit of fresh fuel fabricated from spent fast reactor fuel, $u_{3FF,t} = Cb_F U_{3F,t'}$ where C is the conversion ratio, is purchased at cost p_{3FFU} .
- A stream of waste from spent fast reactor fuel, denominated in units of initial fuel, is generated at a rate $w_{3F,t} = b_F U_{3F,t}$ and is disposed of at cost p_{3FW}.

9

Time profile of electricity production is denoted z_{3r}

CEEPR MIT Contor for Energy and Environmental Policy Research

Fast v. Thermal Reactors in Constant Production Path

Equilibrium Cost' Concept • Choose a time when the profile of costs is constant. • Add up all costs realized at a point in time. $\pi_{1Z} = p_{1HU} \phi_{HUZ} b_H + p_{1HK} \phi_{HKZ} \delta_H + p_{1HW} \phi_{HUZ} b_H$ • What is missing? $p_{1Z} = p_{1HU} \phi_{HUZ} (r + b_H) + p_{1HK} \phi_{HKZ} (r + \delta_H) + p_{1HW} \phi_{HUZ} b_H$ $p_{1Z} - \pi_{1Z} = p_{1HU} \phi_{HUZ} r + p_{1HK} \phi_{HKZ} r$

